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smooth decay in Fig. 8, some structure can be seen in 
the x-ray flux. 

We feel that the stabilizing effect of hot electrons 
should not be overlooked in the planning of thermo­
nuclear experiments. 

Note added in proof. A lower limit to the heating effi­
ciency of the electron beam is easily calculated, and is 
found to be surprisingly high. The heating efficiency is 
defined as the ratio of the steady-state loss of power 
from the plasma to the input power of the beam. A 
lower limit to the power loss from the plasma is given 
by the total energy stored in the plasma divided by its 
decay time constant. Any instability during steady-state 
operation would cause the plasma to be lost faster, and 

I. INTRODUCTION 

FOR several years there has been much interest in 
canted magnetic systems. Purely on grounds of 

symmetry and the thermodynamics of phase tran­
sitions, Dzialoshinski1 first suggested the form of the 
interaction which gives rise to the canting. Moriya2 

included the effect of spin-orbit coupling in the super-
exchange Hamiltonian of a system with a nonde-
generate orbital ground state to find, in addition to the 
usual isotropic exchange and the well-known symmetric 
anisotropic exchange (which finds its origin in the 
combined effects of the spin-orbit coupling and the 
crystal field), that there is a further exchange term 
which is antisymmetric with respect to the interacting 
spins Si and Sy and is of the form 

_ _ _ _ _ OCr^Dtf-SjXSy. (1) 

t Supported in part by the U. S. Office of Naval Research, The 
National Science Foundation, and the AlfredfP. Sloan Foundation. 

* Present address: Clarendon Laboratory, Oxford, England. 
1 1 . Dzialoshinski, Phys. Chem. Solids 4, 241 (1958). 
2 T. Moriya, Phys. Rev. 120, 91 (1960). 

give a larger value to the power loss. An upper limit to 
the power input is the power drain on the power supply. 
Since some of the electron beam does not pass through 
the hollow anode and does not reach the plasma, this 
number is too big. The largest ratio of these two num­
bers is found in the short-lifetime experiments using the 
diamagnetic loop. Here the lower limit to the heating 
efficiency is about one percent. 
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Here D# is a vector that depends linearly on the spin-
1 orbit coupling constant, the precise form being derived 
£ in Moriya's paper. In most of the canted antiferro-

magnetic crystals which have been investigated, for 
~ example, a-Fe203,

1 MnC03,8 KMnF8,
4 and CuCl2 

2 2H2O,2 the canting angle has been found to be of the 
order of 1°. 

a-CoSC>4 has an orthorhombic crystal structure and 
B a four-sublattice canted antiferromagnetic structure 
c having zero net magnetic moment. Its magnetic struc-
e ture was first determined in the neutron diffraction 
e experiment of Frazer and Brown.6 They, however, were 
a not at the time of their first paper, aware of the existence 
v of the two forms of C0SO4 (see Sec. I l l) , as they 

attempted to explain the static susceptibility measure-

3 A. S. Borovik-Romanov, Zh. Eksperim. i Teor. Fiz. 36, 539 
(1959) [English transl.: Soviet Phys.—JETP 9, 539 (1959)]. 

4 A. J. Heeger, Olaf Beckman, and A. M. Portis, Phys. Rev. 
123, 1652 (1961). 

8,B. C. Frazer and P. J. Brown, Phys. Rev. 125, 1283 (1962); 
P. J. Brown and B. C. Frazer, ibid. 129, 1145 (1963). 
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I t is known from neutron scattering experiments thata-CoS04 is a four-sublattice canted antiferromagnet 
with no net magnetic moment. In this paper the magnetic properties of this material are analyzed using a 
model in which an isotropic fictitious spin of J is assigned to each Co"1"1" ion. The large canting angle of 25° 
is interpreted in terms of antisymmetric terms in the Hamiltonian due to anisotropic superexchange and the 
large anisotropy in the g values. Corresponding to the four sublattices, there are four spin-wave modes at 
k — 0. Calculations indicate that the resonant frequencies of these modes should lie in the far infrared, and 
that only three of the modes should be observable spectroscopically. In addition, static susceptibilities of the 
system have been calculated f or T=0 and T2> TV (12 °K), and the g values have been estimated. Far-infrared 
transmission experiments have resulted in the observation of three lines at 20.6, 25.4, and 35.8 cm"1, with 
relative intensities 1:1:0.1. Although these lines are presumed to be the three expected resonances, an 
unambiguous fitting for all the parameters of the model has not been possible. The temperature dependence 
of the resonance lines is anomalous. 
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FIG. 1. The magnetic structure of a-CoSCU as determined by 
neutron diffraction measurements. The magnetic moments are 
coplanar and canted within the be plane (mi= —1113, m.2= — m j . 

merits of Borovik-Romanov and Kreines6 on what is 
now known5 to be /S-CoSCU in terms of the magnetic 
structure they had found for ai-CoSO^ The neutron 
diffraction measurements showed that the magnetic 
unit cell and the chemical unit cell are identical and 
that the magnetic moments are aligned as shown in 
Fig. 1. The four magnetic moments are coplanar and 
lie in the be plane, inclined to the b axis at a canting 
angle of 25°. The magnitude of the moment was found 
to be 3.3±0.2 Bohr magnetons at 4.2°K. The magnetic 
moments and their environments are identical except 
for orientation, and can be brought into one another 
by the symmetry operations of the crystal. 

In this paper we present the far-infrared magnetic 
spectrum of CK-C0SO4 which resulted from low-tem­
perature transmission experiments on pressed powder 
samples.7 Three antiferromagnetic resonance lines were 
observed. This is the number allowed for a coplanar 
four-sublattice model, as has been shown by Joenk for 
CuCl2*2H20.8 A further purpose of this paper is to 
attempt to correlate the various low-temperature 
properties of (2-C0SO4 with each other, using a molecular 
field model. Uryu9 has also attacked this problem, but 
using rather different techniques. In a spin Hamiltonian 
in which he has omitted the important exchange inter­
actions between C01 and C04 or C02 and C03 (see Figs. 
1 and 4), he replaces the spin operators by classical spin 
vectors. He derives the anisotropy for the magnetic 
system by a perturbation scheme in which the splittings 

6 A. S. Borovik-Romanov and N. M. Kreines, Zh. Eksperim. i 
Teor. Fiz. 35, 1053 (1958) [English transl.: Soviet Phys.—JETP 
8, 734 (1959)]. 

7 1 . F. Silvera and M. Tinkham, Bull. Am. Phys. Soc. 9, 625 
(1962); I. F. Silvera, ibid. 8, 601 (1963). 

s R. J. Joenk, Phys. Rev. 126, 565 (1962). 
8 N . Uryu, J. Phys. Soc. Japan 18, 1641 (1963). 

due to the rhombic distortions from cubic symmetry are 
considered to be greater than that due to the spin-orbit 
coupling. His attempt to fit the theory on a-CoS04 with 
data available on £-CoS04 was unsuccessful. 

In Sec. II a detailed account of the crystal structure 
and exchange paths is given, as a good understanding 
of this is necessary before one can try to comprehend 
the magnetic behavior of the system; in Sec. I l l a 
two-sublattice model of a cobalt salt with a fictitious 
spin of -| is considered in order to demonstrate how, 
symmetry permitting, large canting angles can be ob­
tained with an isotropic exchange Hamiltonian and an 
anisotropic g tensor; in Sec. IV we show that the ex­
change Hamiltonian must be anisotropic in both the 
symmetric and antisymmetric parts and we write down 
the most general Hamiltonian which is consistent with 
the crystal symmetry. Section V is devoted to calcu­
lating the resonant frequencies, and Sec. VI to the 
calculation of the rf and the static susceptibilities. In 
Sec. VII we calculate the Neel temperature and consider 
the stability of the given magnetic structure; in Sec. 
VIII we calculate the static susceptibility above the 
Neel temperature on the molecular field model; in 
Sec. IX we make a crystal-field calculation in terms of 
a simple point-charge model to find the g values. 
Finally, the experimental apparatus and data are dis­
cussed in Sec. X and the fitting procedure in Sec. XI. 

II. CRYSTAL STRUCTURE 

Two forms of C0SO4 are known to exist: a-CoS04 is 
the low-temperature modification, stable below about 
600°C; above this temperature /?-CoS04 is the stable 
form. At room temperature /3-C0SO4 slowly transforms 
into a-CoS04. a-CoS04 has10 the space group D2h

17 and 
is isostructural with NiS04,n CrV04,

5 MgS04,
12 and 

FIG. 2. The chemical cell of CK-C0SO4 as determined by x-ray 
diffraction. For clarity some of the SO4 tetrahedra and all of the 
sulfur atoms which are located within the tetrahedra have been 
omitted. Note that the adjacent oxygen octahedra along the c 
axis are tilted with respect to one another. 

10 P. J. Rentzeperis, Neues Jahrb. Mineral., Monatsch. 10, 226 
(1958). Interchange a and /? to correspond to present notation. 

11 P. I. Dimaras, Acta Cryst. 10, 313 (1957). 
12 P. J. Rentzeperis and C. T. Soldatos, Acta Cryst. 11, 686 

(1958). 
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MnS04
13; 0-CoSO4

10 has the space group Z>2/*16 and is 
isostructural with CuS04 and ZnS04.

13'14 Methods of 
preparation are described in the references cited and 
also by Brown and Frazer5 and Kreines.15'16 These will 
not be detailed here. 

The positions of the orthorhombic space group D^1 

occupied by the atoms of a-CoS04 (notation of the 
International Tables17) are as follows: 

TABLE I. Position parameters of atoms in a-CoS04. 

Atom 

Co 
S 
Oi 

On 

X 

0 
0 
0 
0.250 

y 

0 
0.361 
0.250 
0.472 

z 

0 
0.250 
0.058 
0.250 

4 Co in 4 (a); (0,0,0); (0,0,1), 
4 Sin 4(c); (0,y,J); (0, - y , f ) , 
8 Oi in 8 (/) ; (0,y,z); CO. -v.-z 
8 On in 8(g); (*,y,l); 

\s>, - y > t ) > 
(0, -y, -s); (0,y,i-«); (0,-y,i+«), 

The remaining positions are obtained by adding (|,|,0) 
to those listed above. Rentzeperis10 has made the most 
complete analysis of a-CoS04 and we shall use his 
results. The lattice constants are 

00=5.200 A, &<>= 7.876 A, c0=6.53lA, 

and the various parameters are given in Table I. In 
Fig. 2 we show the chemical cell. 

Let us consider the environment of the Co2+ ion at 
(0,0,0) which is surrounded by a distorted oxygen 
octahedron. Its six nearest neighbors are 2 (Vs at 
dz(0,y,z) and 4 On's at ±(—x+$, y~ h i) and 
^(x~h y~~h> !)• We note that this environment has 
inversion symmetry. Figure 3 shows the projections of 
the 7 ions on the ab and ac planes. The Co—O and the 
S—O distances are also relevant and we list them in 
Table II.10 

Finally, the O I - O I , Oi~On, and the O n - O n 
distances in the S04 tetrahedra are 2.51, 2.51, and 
2.60 A, respectively. These parameters were all deter­
mined at room temperature. Although the octahedron 
of oxygens surrounding the cobalt is strongly distorted 
as is shown in Fig. 3, the tetrahedron of oxygens about 
the sulfur is only very slightly distorted. Further, 
each On is bonded to two cobalts and one sulfur, 
whereas each Oi is bonded to only one cobalt and one 
sulfur. The C0O6 octahedron is tilted as well as being 
distorted. It is of great importance to notice that the 
adjacent octahedra along the crystal c axis are tilted 
with respect to one another (the axis of rotation being 
along a), whereas the octahedra surrounding the cobalts 
in the ab plane have the same orientation. Comparing 
Figs. 1 and 2, we see that the orientations of the mag-

13 M. J. Coing-Boyat, Compt. Rend. 248, 2109 (1959). 
14 P. A. Kokkoros and P. J. Rentzeperis, Acta Cryst. 11, 361 

(1958). 
15 A. S. Borovik-Romanov and N. M. Kreines, Zh. Eksperim. i 

Teor. Fiz. 33, 1119 (1957) [English transl.: Soviet Phys.—JETP 
6, 862 (1958)]. 

16 N. M. Kreines, Zh. Eksperim. i Teor. Fiz. 35, 1391 (1958) 
[English transl.: Soviet Phys.—JETP 8, 972 (1959)]. 

17 International Tables for X-Ray Crystallography (The Kynoch 
Press, Birmingham, England, 1952). 

netic moments of the cobalt ions and the corresponding 
oxygen octahedra are identical, save for the magnitudes 
of the tilt angles. The angle between the Co—Oi bond 

TABLE II. Interatomic distances in a-CoS04. 

Atom 

Co 
Co 
S 
S 

Neighbor 

Oi 
On 
Oi 
On 

Coordination 
number 

2 
4 
2 
2 

Distance 
(A) 

2.01 
2.10 
1.53 
1.57 

(3) -8-K 

-0-
Co>-y,-*) 

-G>> * 
Co,y,z) 

0 

(b) 

zM 

-X2$% 

0 

®te-—*< 

0 

FIG. 3. The octahedral environment of the cobalt ions: (a) pro­
jection onto the ab plane; (b) projection onto the ac plane. The 
+ and — denote above and below the plane of the paper. 
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cw 

o <>*&** 
® fa/far 

FIG. 4. A projection of the atoms involved in some of the 
important exchange paths onto the plane containing the four 
inequivalent cobalt ions. 

and the b axis is 10.9°, and the angle between the plane 
containing the four On's and the ca plane is 7.7°. If the 
octahedron were tilted but not distorted, these two 
angles would be equal; however, even if these angles 
were the same, the octahedron could still be distorted. 
One can consider a larger environment of the cobalt 
ion in which case we see that it is actually sitting in a 
distorted octahedron of (804~~~) tetrahedra. In this 
case we find 29.9° and 33.8°, respectively, for the angles 
given above, where the angles are now between the 
Co—S direction and the b axis, and between the plane 
containing the 4 sulfurs (associated with the Co—On 
bonds) and the ca plane. For comparison, the cant angle 
of the magnetic moments is 25° in the same sense. 

I t is convenient to label the four cobalt ions at the 
positions (0,0,0), (0,0,J), (j , i ,0), and (f,i,£) in the 
chemical unit cell with the numbers 1, 2, 3, and 4, 
respectively, as shown in Fig. 1, In Table I I I , we can 
then write down those exchange paths between the 
cobalts which are likely to be the most important. 

Some of these paths are shown in Fig. 4. Exchange 
paths of the type Co—O—O—Co in which the two 
oxygens belong to a given SO4 tetrahedron have been 
ignored since the oxygen ions are bonded primarily to 
the sulfur and the cobalt ions and not to themselves. 

TABLE III . Exchange paths in CK-C0SO4. 

Cobaltions Paths 
Number of neighbors, 

C01-C02 
C03—C04 

C01 —C03 
C02—C04 

C01—C04 
C02—C03 

C01—C01 
C02—C02 
C03—C03 
C 0 4 - C 0 4 

C o - O n - C o 
C o - O n - C o 

C 0 - O 1 - S - O 1 - C 0 

C o - O i - S - O n - C o 
C 0 - O 1 1 - S - O 1 - C 0 

C o - O i - S - O n - C o 

Co-Oi i -S -On-Co 
C 0 - O 1 1 - S - O 1 1 - C 0 

The S - 0 bond is a very strong one and its predominant 
character is covalent; the Co—0 bond is comparatively 
weak and is mostly ionic. 

III. TWO-SUBLATTICE MODEL 

Before embarking upon a long and tedious calculation 
using the four sublattices necessary to treat the CX-C0SO4 
problem, it is instructive and illuminating to first con­
sider a simpler problem involving only two sublattices. 
The purpose of introducing this model is to show that 
the anisotropy in the g values of the Co + + ions can give 
rise to large canting angles of the magnetic moments if 
the axes of the g tensors are tilted with respect to one 
another. The two sublattices are formed from adjacent 
cobalt ions located in two sites of distorted octahedra 
whose axes are tilted with respect to one another. In 
Fig. 5 (a) the xyz coordinate system coincides with the 
crystal system and the x/y/z/ system coincides with 
the principal axes of the g tensor of the ith cobalt ion. 
Since, at this time, we are just seeking to show the 
effects of the anisotropy of the g tensors, we shall 
describe the system in terms of the true spin with the 
isotropic superexchange Hamiltonian 

3 C = - / S i . S 2 (2) 

where / is positive. I t will be shown in Sec. IX, that 
the true spin magnitudes are anisotropic if the octa­
hedral environment of the cobalt ions is distorted; thus, 
although Eq. (2) is isotropic in the above form, it can 
give rise to much anisotropy when its effects are con­
sidered within a ground manifold whose nature is 
dictated by the larger perturbations of the crystal field 
and the spin-orbit coupling. The problem is greatly 
simplified if we put all the anisotropy into some effective 
exchange constants and work with isotropic spin vari­
ables. This can be done by introducing the fictitious 
spin.18 The magnetic properties of a system are de­
scribed by those low-lying states which involve spin 
and orbital angular momentum reorientations. In 
cobalt, at low temperatures, the only energy level which 
is effectively populated is the ground Kramers' doublet 
(see Sec. I X and Fig. 9) for which the two states can 
be denoted by | a) and | b). Thus we need consider only 
these two states when evaluating the low-temperature 
magnetic properties of the crystal. For a doublet state 
the fictitious spin is s = i so that 2^+1 = 2. We shall 
henceforth denote the true spin with an upper case S 
and the fictitious spin with a lower case s. 

The g values are defined by considering the Zeeman 
Hamiltonian 

3 e , = 0 H - ( L + 2 S ) , (3) 

within the states \a) and \b), and writing down an 
equivalent Zeeman operator 

18 B. Bleaney and K. W. H. Stevens, Rept. Progr. Phys. 16, 108 
(1953). 
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operating with the states | + J ) and j —%). Identifying 
corresponding matrix elements, the familiar relations18 

are obtained: 

gx> = 2(b | LX>+2SX> | a), 

gv> = - 2i(b | Ly>+25VI a), 

gz, = 2(a\Lzf+2Sz>\a). 

The g values may be split up into orbital and spin parts 
and 

«-**+«'» (4) 
Si=|g.-58i, i=x',y', z'. 

Equation (2), which is expressed in terms of the true 
spins can be written in terms of the fictitious spins if 
we transform Si and S2 to the x'y'z' system (Fig. 5) 
so that we may use Eq. (4). The transformation for 
Si is 

O ix *J %$' j 

Siy=Sty' cos0+.S,v sin0, (5) 

SiZ= —Siy' smO+SiZ> cosfl, 

and similar equations hold for S2 with 6 replaced by 
— 0. Thus applying Eqs. (5) and (4) to (2), we find 

3C= —lJZ(gx'8)2Six'S2x'+ (gy'S)2 COS2dsly>S2y> 

+ (gz,
s)2 co$2dslz>S2z>~gy>8g2>

s sin20 

X(s1y>S2»>SU'S2y>)']. (6) 

The last term on the right is antisymmetric in the 
fictitious spin and gives rise to a canting of Si and 82. 
(To verify that the antisymmetric term is not a spurious 
effect due to expressing the Hamiltonian in terms of two 
coordinate systems which are tilted with respect to one 
another, one may transform the fictitious spins back to 
the crystal xyz axes. If this is done an antisymmetric 
term of the form D«Si x S2 will be seen to exist.) 

To determine the equilibrium directions of the fic­
titious spins below the ordering temperature, we define 
the xx'yi'zi" and x^'y^zj' coordinate systems shown 
in Fig. 5 (a) such that in equilibrium (si) and (s2) point 
along the y\' and y<lf axes. The transformations are 

Six' ~ $lx") 

Siy'^siy" cos<ps+slz» sin<p8, (7) 

Sw= —siy» sin<£>s+Si2" cos<pg, 

and again we get the transformation on S2; by changing 
the sign of <p3. In the xffy"z" systems v must be a 
constant of the motion.19 Thus by performing the 
transformation (7) on Eq. (6) and using 

ihdsy»/dt= [ v , 3 C ] s O , (8) 

we find for the equilibrium angle <p8 of the fictitious 

19 J. H. Van Vleck, Phys. Rev. 74, 1168 (1948). 
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t1 

FIG. 5. (a) The various coordinate systems in the two-sublattice 
model. The xyz system is the crystal system; the x'y'z' the system 
in which the g tensor is diagonal; and the x"y"z" the system in 
which s lies along y" in equilibrium, (b) The relationship between 
the fictitious spin s and the magnetic moment m. 

spins 

2gyag*a Xanie 
t a n 2 ^ = . (9) 

(gysy+lg.'8)' 

Finally, to find the equilibrium direction of the mag­
netic moments, we note that by projecting S\y" onto 
the single-primed axis 

mw^Pgi'Sw^Pgi'Siy" sm(p8, 
(1 0) 

™ly'=SPgV'Sly's=Pgy'Sly» COS<?s. 

If (pm is the angle between the magnetic moment and 
the single-primed y axis [Tig. 5(b)] , then 

tan<pw= (gz'/gv*) tan<ps, (11) 

and in equilibrium the value of the magnetic moment 
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TABLE IV. Permutation of the Co++ ions under the operations of the space group.a 

Co site 4 / i 4/2 4C2* 4C2*S0 2o* %r%* 4C 2 y 4C2y
8C 2<r^11 2o-^ 1 2 4C 2 * s c l 4 C 2 / ° 2 2cr, 2<r^ 

C01 (0,0,0) 1 3 1 3 1 3 2 4 2 4 2 4 2 4 
Co2(0,0i) 2 4 2 4 2 4 1 3 1 3 1 3 1 3 
Co«(J,*,0) 3 1 3 1 3 1 4 2 4 2 4 2 4 2 
Co4(i,i,J) 4 2 4 2 4 2 3 1 3 1 3 1 3 1 

a Ii and 12 stand for inversion, Cn is rotation by -K about the /th axis, and <r; is reflection in a plane perpendicular to the *th axis. Superscripts sc and 
gl refer to screw and glide operations, respectively. 

In a notation in which the bottom row shows the effect of the operator outside of the parentheses on the top row, we note: 

'(;: z s) r ( i: Z s) cr-Ti^aon) 
c.(;:_;;_2:) c*C-*: S-£) c-(-J:-X£) 

^ {Sx SV Sz\ „ ( Sx Sy Sz\ ( Sx Sy Sz\ 
ffX\Sx-SV~sJ ffy\Sx Sy-Sz) a*\Sx-Sv Sz) ' 

is given by 

= f e 2 cosV,+^^ 2 s inV s J f %» . (12) 

The magnetic moment defined by Eq. (12) is that which 
would be measured in a neutron diffraction experiment. 
The value of v is J a t T=0; for 7 V 0 , one must use 
the proper statistical average. I t is to be noted that if 
gv'>.gz'> then m always lies between the equilibrium 
direction of the fictitious spin y" and the y' axis. The 
magnitude of m must also satisfy the inequality 

gv>2m/p>g*. (13) 

We now consider two limiting cases: 
(a) The g tensors are not tilted with respect to each 

other. In this case 0 = 0 and from Eq. (9) <ps=0 so that 
there is no canting. 

(b) The g tensor is isotropic. From Eq. (9) we find 
tan2«s>,= —tan20 or <ps=—d and again there is no 
canting. 

To get an idea of the order of magnitude of the 
canting due to the anisotropic g tensor we use some 
typical values in Eq. (9): 

^ = 7, ** = ^ = 3 , ^ * = 5 , g**=g*8=2.S. (14) 

If 0=20°, then « ? s ^ - 1 7 ° and from Eq. (11) we find 
(pm=: — 7.50. The angle of cant away from the y axis is 
d+<pm=12.5°. We conclude that the anisotropy of the 
g tensor alone can give rise to large canting angles. 

IV. THE HAMILTONIAN FOR THE 
FOUR-SUBLATTICE CASE 

As can be seen from Table I I I or Figs. 2 and 4, the 
principal exchange paths of a-CoS04 are many and 
varied. Each cobalt spin on a given sublattice not only 
interacts with its nearest neighbors on the other three 
sublattices, but also has an intrasublattice interaction 
with its nearest neighbors along the crystal a axis. For 
an initial attempt to write down a Hamiltonian which 
describes the magnetic structure, one might assume 
that the exchange between the true spins is isotropic, 
attributing the anisotropy and canting to the g-tensor 

effects as was shown in the previous section. Although 
this approach yields the proper magnetic symmetry, a 
consideration of the stability shows that the equilibrium 
direction of the magnetic moments must always be 
between the crystal b axis (y axis in the notation of Sec. 
I l l ) and y axis (also defined in Sec. I l l ) , no matter 
what combination of ferromagnetic and antiferromag-
netic exchange integrals is used between the different 
spins. If the yf axis of the g tensor were to coincide with 
the Co—Or bond, then the angle 6 between the y and 
yr axis would be ~ 1 1 ° , and since the angle between the 
y axis and the magnetic moment is ^ 2 5 ° , we would not 
be able to stabilize the magnetic structure observed for 
a-CoS04. On the other hand, if the yf axis of the g tensor 
were to coincide with the Co—-S direction, the angle 6 
would be ^ 3 0 ° , and one might be able to use an isotropic 
exchange model. Actually, the charge distribution in the 
sulfate tetrahedra is complex and unknown; conse­
quently, we cannot determine the angle 0 and therefore 
we shall consider it as a variable for the present. 

Our program in this section is thus to write down the 
most general Hamiltonian taking into account all ex­
change interactions which have been previously men­
tioned. We shall then show how it is possible to simplify 
the Hamiltonian enormously by considering the space 
group of the crystal. 

Labeling the cobalt ions or spins as is shown in Fig. 
1, the exchange Hamiltonian can be written: 

3C=5C12+5C13+5C14+5C23+X24+5C34 

+JC11+5C22+0C33+X44, (15a) 

where, if the crystal coordinate system is used, 

uv ^ xx Six^jx I J yy SiySjy I "Jzz Siz^jz 

i-&-xy ySixSjy'T'SiySjxJ'T'-tiyz \SiySjz-\-SizSjy) 

\-R-zx \SizSjx~T"SixSjz)\-L'xy \Six$jy ScySjx) 

SiySjz SizSjy)~\~L/zx [SigSjx SixSjz) • \lOu) 

This is a completely general expression for the quad­
ratic exchange interaction between two spins. The spin 
components in this expression are those of an isotropic 
fictitious spin of J. The coefficients of the spin operators 
in (15b) will contain effects due to isotropic real spin 

file:///-R-zx
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FIG. 6. The symmetry elements of 
space group Dth11. Most operations are 
self-evident. The inversion / 2 is lo­
cated between Coi and C03, etc.; the 
translation in ay

sl * is z/2; in <ry
gl 2 is 

(a+c)/2; and in o-^1 is (a+b)/2. 

r 

exchange, symmetric and antisymmetric anisotropic 
real spin exchange, and g-value anisotropy. For a spin 
of \, there can be no real single-ion anisotropy effects 
since all squares of spin-^ matrices are multiples of the 
unit matrix, and thus do not exhibit anisotropy effects. 
In our case, the intrasublattice exchange terms 3CU 

will produce effects which look like single-ion anisotropy 
on a four-sublattice model. The pairs of spins referred 
to in the expression for 3Q,{i in (15b) are never identical, 
so that terms such as sixSiX should actually be written 
SixSi'x- In order to limit the number of sublattices to 
four, we have set Si'x^Six* Later, in taking the com­
mutator of Si with 3C**, we must remember this since s* 
commutes with all components of s»/. 

The Hamiltonian (15) has 90 parameters. Next, we 
write down the elements of the space group D2h

17 (Ref. 
17), their spatial positions being shown in Fig. 6. In 
Table IV we show how the four cobalt ions are permuted 
by the space group operations. Now let us consider the 

information we obtain by operating with the various 
elements of the space group on the Hamiltonian, Eq. 
(15), which must remain invariant. Noting that it is 
not necessary to consider the operations involving 
reflection as each of these operations can be paired off 
with a twofold rotation which has exactly the same 
effect on the magnetic Hamiltonian, we find: 

11: provides no information, 
/ 2 : 712=734. K12=Ksi; L12=D*; JU=J*2; 

KU=K*2; Lu=m 
711=733. Kn=K*z; J22=JU; K22=KU; 

Lls=L2*=0. 

In a similar way, we continue to apply the symmetry 
operations of the crystal to the Hamiltonian to find 
relations between the exchange parameters. Taking all 
of these relations into account, we are able to write 
down the most general quadratic exchange Hamiltonian 
allowed by the symmetry of the crystal: 

3C12=zJxx12SlxS2x+Jyy12SlyS2y+Jzz12$U$2z+Lyz
12(SiyS2z ~SlzS2y) , 

^13 = Jxx1SSlxSzx+Jyy1SSiySzy+Jzz1ZSlzSzz+Kyz
1Z(SiyS^z+Si2SBy) , 

xx S\xS±xiJyy SlyS±y\Jzz Slz$4z~\-L'yZ \S\yS\z S\zS4y) f 

3£2* = JxxUS2xSZx+JyyUS2ySzy+JzzUS2zSZz ~Lyz
H{S2ySzz-S2zSZy) , 

3C —Jxx S2xS4x"l~Jyy S2yS4y~\~Jzz S2z$4z~~Kyz {S2yS4z~T"S2zS4y) , 

5C = 7 x x $ZxS4x~T~Jyj S%yS4y~l~J zz SZzS4z~T~-L>yz {SZyS4z~~SZzS4y) > 

&n=Jnusl9*+Jjy*sly*+J„nSu*+Ktt^ 

^22==Jxx11S2x2+Jyy11S2y2+JzznS2z2-Ky2
n(S2yS2z+S2zS2y) , 

3&d=Jxx11SZx2+JyyllSzy
2+J2z11Szz2+KyZ

n(SzySZz+SzzSZy) , 

<JL — J xx $4x \ J yy $4y I J zz $4z &yz \S4y$4z~T~ S4z$iy) > 

(16) 

file:///S/yS/z
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FIG. 7. The various coordinate sys­
tems used in describing a-CoS04. Their 
significance is given in the text. 

We see that this Hamiltonian only allows canting in 
the yz plane and that there is no canting interaction 
between either Si and s3 or s2 and s4 so that they will 
be either parallel or antiparallel. All of this is consistent 
with the magnetic symmetry found by neutron 
diffraction. 

Although we have now obtained a Hamiltonian (16) 
which must describe the magnetic properties of the 
system, we still do not have the most convenient form 
of the Hamiltonian with which to attack the problem. 
It is a great convenience if we choose different axes for 
each spin in such a way that the ground-state magnetic 
order (Fig. 1) is naturally described by the system of 
axes. Let us transform (16) to the double-primed 
system of axes shown in Fig. 7. In this diagram, the 
single-primed axes are the principal axes of the cobalt 
g tensor. The double-primed axes describe the equi­
librium configuration of the cobalt fictitious spins so 
that at absolute zero 

<^ly")= : <^2y")=--W')=--<J4 1 ,") = J, (17) 

where s=§ is the fictitious spin. 
On transforming (16) to the double-primed coordi­

nate system, we obtain equations identical in form to 
(16) but with %"y"zn replacing xyz throughout. For 
example, 

+ Jz>'z'>12Slz>'S2z>> + Lv,,z,^
2(Siy>'S2z>>---Slz>'$2y>>). ( 1 8 ) 

The new double-primed coefficients are functions of 

the unprimed coefficients and of 6 and <p8; at present 
we are not particularly interested in these functions. 
The behavior of the system can be described either by 
the 16 independent parameters of Eqs. (16) or by the 
16 double primed parameters of Eqs. (18). It will be 
seen that it is much more convenient to describe the 
system in terms of the latter set. 

The angle <ps of our transformation is determined by 
the fact that the double-primed equations of the form 
(18) must provide a stable configuration with the 
fictitious spins pointing along the y" directions. Taking 
the commutator, Eq. (8), of sw with the Hamiltonian, 
it is easily shown that the condition is 

J ,, ,,12_j_/r „ „13__ J tl * W ' U = 0 . (19) 

V. THE RESONANCE FREQUENCIES 
AND NORMAL MODES 

It is desirable to treat this problem quantum me­
chanically, since in anisotropic systems a correct semi-
classical treatment is not always apparent. To write 
down the equations of motion we use 

and 
\j$X)$y_] z=:: ISz > e t C . 

(20) 

(21) 

The equations are linearized by assuming small oscil­
lations about the configuration described by (17) and 
letting the x" and z" components of spin have time 
dependence exp(—ud). If p= (ifta))/s, the elements of 
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the resonance matrix are 

Six" S2x SZx" SAx" Siz" S2z' SZz SAZ> 

Six" 

S2x" 

S$x" 

SAx" 
Siz" 

S2z" 

SZz" 

SAz" 

P 
0 
0 
0 
Jo 

J x" x" 

J x" x 

J x"x 

12 

,/13 

„14 

0 

P 
0 
0 

J x"x" 

Jo 
J x" x 

J x" x 

12 

,M 
„13 

0 
0 

p 
0 

Jx","ld 

J x"x,f 

-Jo 
— T ,, „ 1 2 

J x " x" 

0 
0 
0 

p 
T ,, „ 1 4 

J x" x" 
J x"x" 

— If, „ 1 2 

J x"x" 
-Jo 

~~Jo 
— T ,, „12 

J z " z " 1 ,, „ 1 3 

J z" Z" 
T >, „ 1 4 

p 
0 
0 
0 

— 7 ,, ,,12 

J z" Z" 

-Jo 
T ,, „ 1 4 

J z" Z" 

Jz»z"13 

0 

p 
0 
0 

— T ,, „13 

- T ,, ,,u 

j z>rzti 

Jo 
J ,, „ 1 2 

0 
0 

p 
0 

J z" Z" 

— J ,, „ 1 3 

J z" Z" 

J*»,»n 

Jo 
0 
0 
0 

p 

(22a) 

where 

J 0 ~ J y " y " J y"yn ,14 I J „ n ' \J y"y" -/.. 
The solutions to the associated secular equation are 

«1,22= 0 2A 2 ) (/0+/*"*'<12+/*»,"13+/*"s'<14) (Jo+J, >U), ,, , ,12„„ J ,, , ,13__ J " z" -J z" z" *> z 

C03,42= (s2/m ( J o + / , " « " 1 2 - / , » , " 1 3 - / , " , » 1 4 ) (Jo+J*»*-12+Jz»,»n+Js>t»U) , 

a>5 ,6 2 =(5 2 / * 2 ) ( /0 - - / , " , » 1 2 - / , » , " 1 8 +/ ,»x" 1 4 ) ( /0 - - / 2 " ,» 1 2 +/ , "^ 1 3 - / , » ,» 1 4 ) , 

C07.82= {sVtf) ( J o - / , " , " 1 2 + J X " X - 1 3 - J X » X » U ) (Jo-J^,-n - / * " * " 1 3 + / s " Z " 1 4 ) • 

(22b) 

(23a) 

(23b) 

(23c) 

(23d) 

We have eight roots, only half of which are significant since the ±o) solutions are physically identical. The corre­
sponding normal modes are described by the matrix which diagonalizes (22a), namely: 

Six" 
Co / / 

SZx" 

SAx" 

Siz" 

S2z" 

SZz" 

SAZ" 

0)1 

1 
1 
1 
1 

— l\l 

— tJJL 

l\X 

IjJL 

0)2 

1 
1 
1 
1 

IfJi 

1}JL 

— tjJL 

— tfJL 

0)3 

1 
1 

" 1 
- 1 
— tv 
— iv 
— iv 
— iv 

CO 4 

1 
1 

- 1 
- 1 
IV 

IV 

IV 

iv 

0)5 

1 
~ 1 
- 1 
1 

— t(T 

tor 
— la 
tcr 

0)6 

1 
- 1 
- 1 
1 

ta 
— ta 
ta 

— ta 

0)7 

1 
- 1 
1 

- 1 
— IT 

IT 

IT 

— IT 

0)8 

1 
- • 1 

1 
~ 1 
IT 

— IT 

— IT 

IT 

(24) 

where 

(Jo+Jx»x»
a'\-J*" 

V/o+JW'12-/*" 
Jo-\~J x . 1 2 -

• / . 

Jo+Jz 

Jo—Jx' 

<I2+/2. 
' 1 2 - / x . 

/o-JW<I2+/2-
/ r f t „ T ,, „i2_i_ j , 
f J 0 J x " x " i J x' 

r „ _ _ T ,, , . i 2 _ _ r ,, 
i J Q J z " z " J z " ; 

S+J* 14 v 1/2 

1 3 „ J , 14 k 

13 J 14 v 1/2 
J x" x" \ x," x" \ 

"J 

13 1 J ,, , 14v 1/2 ' \J x" x" \ 

3 _ J 14\ 1/2 

3+/« — ) 
' z " ' 

(25a) 

(25b) 

(25c) 

(25d) 

These normal modes are shown in Fig. 8 and are 
similar to those found by Joenk8 for CuCl2- 2H20. From 
the diagram or (24) we can see that modes o)i,2, o)3,4, 
and 0)5,6 have oscillating moments along the crystal a, 
c, and b axes, respectively. Hence each will absorb 
radiation polarized along one axis if it is of the proper 

frequency, as will be shown in the following section. 
One can show that the intensity of the Tine associated 
with 0)5,6 is proportional to the square of the sine of 
the canting angle, and thus this line disappears in the 
limit of zero cant. Mode 0)73 has no oscillating magnetic 
moment and will be unobservable by the usual experi­
mental techniques. In all of the modes, the tips of the 
fictitious spins describe elliptical paths about their 
equilibrium directions, with the ratio of the axes of the 
ellipses being given by Eqs. (25). We point out that the 
resonance frequencies (23) are affected by the intra-
sublattice interaction since it is anisotropic [see (22b)]. 

VI. THE RF SUSCEPTIBILITIES 

The calculation of the rf susceptibilities is compli­
cated by the fact that an external magnetic field inter­
acts with the magnetic moments and the principal axes 
of the g tensors do not lie along the crystal axes which 
will be the principal axes of the susceptibility by 
symmetry. We detail the derivation of the interaction 
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FIG. 8. The normal modes of the fictitious spins. The polari­
zation of the associated oscillating magnetic moments is indicated 
by the double-headed arrows through the origin. 

Hamiltonian for the spin at position 1; the others follow 
immediately by reversing the angles. With the axes as 
shown in Fig. 7, let the principal values of the cobalt 
g tensor along the single-primed axes be gx>, gy, and 
gz>. If the interaction of the external magnetic field with 
Si is 3Ci, then 

—3Ci=mix'Hiai>+tniy>Hiy>+tnu>Hu>. (26) 

The Hiz>, etc., are the components of magnetic field 
observed in the single-primed system of Coi. For a 
field applied in the crystal xyz system, the different 
cobalt ions will see different field components in the 
primed systems since the axes are tilted with respect 
to one another. Consequently we distinguish the fields 
with the numerical subscripts. 

We apply the transformations: 

Hix'~ Ex, 

Ew =Hy cos0-Ez sinfl, (27) 

Elz> = Ey sin0+I7s cos0, 

S\x
f "Six" , 

s\y* — s\vn c o s ^ + s i * " sin<p,, (28) 

sw= — siy" sin^«+Si«" cos<ps, 

and 

and noting that niiz>=l3gx>Six', etc., one obtains after a 
little rearrangement: 

5Ci= —fisix»gx>Hx 

—P$iv"[Hy(gi/' cosps cosd—gz> sin<ps sin0) 
+E9(—gy> cos<ps smd—gz> $in<ps cos0)] 

—flSrz»[Ez(—gy> sin<ps sin0+g*' cos^ s cos0) 
+Hy(gy> skips sin0+gz> cos<p6 sin0)]. (29) 

3C3 is similar to 5Ci whereas JC2 and 3C4 are obtained by 
reversing the signs of 0 and <ps. The additional terms 
are inserted into the equations of motion (20), and 
alternatively taking the external field along the crystal 
x, y, and z axes, the resulting inhomogeneous equations 
are solved for six»> etc. The siX"} etc., are then projected 
into the single-primed axes where they can be converted 
into magnetic moments by multiplying with the appro­
priate g value and the Bohr magneton. A further trans­
formation of the magnetic moments into the crystal 
xyz system then gives the susceptibilities: 

x ' = -
Aft2„ 2.2 J A J //12__ T „ , 1 3 _ J ,, 14 ^P5x<> J 0HTJ z" z" Jz"z" Jz"z" 

¥ (0)i,2
2 —CO2) 

(30a) 

W%y2S2Vo-Jx»x»12-Jx»x»U+Jx»x»U) 
X„' = : , (30b) 

W- (0J5 )6
2 —CO2) 

4 ^ g M V (Jo+Jx»x»12-Jx»x»n-Jx»x»U) 
XJ , (30c) 

(C03 ,42 —CO 2 ) 

where 

gzv^g*' cosv?, sinS+gy* sin<ps cos0, 

gzz = gz' cos<p8 cosd—gyf sin cps sin0, 

gyy^gy' COS(ps CO$6~-~gz' §m<p& s i n 0 , 

gvz = gzf sin<^s cosd+gyf cos(f& sin0. 

(31a) 

(31b) 

(31c) 

(31d) 

(31e) 

(The expressions for gyy and gyz will be used later in 
Sec. VIII.) 

The integrated absorption may be computed, as­
suming a narrow linewidth, by applying the Kramers-
Kronig relations,20 with the results 

X*"A« = (2wgx
2 /32s/h) (1/M) , (32a) 

Xy"Aco = (2<irgzy
2 (?s/h)<r, (32b) 

X9"Aa)=(2Tg,*lFs/h)v. (32c) 

We notice that the mode co7,8 does not contribute to the 
absorption as was pointed out in the preceding section. 

Using Eqs. (30) and (23), and setting co = 0, we are 
able to write the components of the static susceptibility 
at absolute zero: 

X*'(0) = 

Xy'(0) = 

X.'(0) 

4g*2/ 

(Jo+J* 

(Jo-J* 

' x" r** xffx' 

4gw*/S* 

.,.*+J,.t. 

•U+J« 

a-J... 

>x"U) 

z" J 

(Jo+Jz 2 4 . T „ ,13 I T ,U\ 
\Jz"z" \ J z" z" ) 

(33a) 

(33b) 

(33c) 

20 M. Tinkham, Phys. Rev. 124, 311 (1961). 
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It should be remarked that these susceptibility results 
apply to a single chemical unit cell of a-CoS04 which 
contains four cobalt ions. 

VII. T H E NEEL TEMPERATURE A N D 
T H E STABILITY CONDITION 

Equation (18) is a convenient form of the Hamil-
tonian with 16 parameters and 12 spin variables. If a 
molecular field calculation is performed using this 
Hamiltonian, we shall obtain 12 values for the ordering 
temperature TV ( i= l , • • *, 12), and corresponding to 
each root there will be a particular ordering configu­
ration.21 The fact that the ground-state order is known 
to be as in Fig. 1 will restrict considerably the values 
that can be assigned to the parameters in Eq. (18). The 
calculation is most easily carried out if one takes ad­
vantage of a useful result (see Appendix) for the 

Hamiltonian 

3 C = CxSx+CySy+CgSg. (34) 

If (cx
2+cy

2+cz
2yi2/2kT«l, then 

<*>r= -Ci/4kT, i=x, y,z, (35) 
for a spin of | . Since, in the molecular field approxi­
mation, Eq. (18) takes on the form of Eq. (34), we can 
write down the system of 12 homogeneous linear 
equations, (35), in the form of a matrix: 

Si: 

Six S%y" S%z 

A 

0 

0 

B 
(36) 

where 

(Six") 

(S2x») 

(s*x») 

(s*x") 

(Six") 

y+Jx-x-11 

7 ,, ,,12 

J x" x" 
7 ,t , , 1 3 

J x" X" 
7 n ,z 1 4 

J x" X" 

(S2x») 

7 ,, ,,12 

J x" X" 
~JL J , , ,,11 T \ J x" x" 

7 ,, ,,u 

J xtf x" 
J z, ,z1 3 

J x" X" 

(Six") 

7 ,, ,,12> 
J x" X" 
7 z, ; / 1 4 

J x" X" 

y+Jx»x»n 

7 ,, ,,12 

J x" X" 

(SAx") 

7 ,, ,/14 

J x" X" 
7 ,, ,,13 

J x" X" 
7 ,, ,,12 

J x" X" 

y+J*>*'u 

(36a) 

B = 

(Sly" 

(S2y» 

(Sty" 

(SAy" 

(su» 

(S2z" 

(Sl»" 

(SAz" 

and 

(Sly») 

/ \ J y" y" 

7 ,, ,,12 

J ytty'f 
7 „ ,,1Z 

1 „ Z,14 
J y"y" 

J\y"Z" 

7 ,, ,,12 

K ,, z,13 

7 ,, ,,u 

<*2„"> 
/ n zz12 

J y"y" 

y+Jy-y"11 

J y"y'l 

7 ,, ZZ13 
J y"y» 

— 7 ,, z/12 

A I / " « " 

— 7 ,, ,,u 

JXyf'z" 

(Szy") 

7 zz ,,™ 
J y"y" 
7 ,, ,,U 

J y'fy" 

y+Jyyn 

7 zz „ 1 2 

J yt'y,, 

JXy"z" 

7 ,, ,,u 

*-oy" z" 

7 ,, „ 1 2 

(SAy") 

J ,, zz14 

J y"y" 
7 ,, „ 1 3 

J y"y" 
T ,, ,A2 

J y"y" 

^4_ j „ ,,n 
Y\Jy"y" 

J^y"Z" 

J^y"z" 

•Lsyf'z" 

— K,, n11 

J\y"Z" 

(Slz") 

K ,, ,,n 

l\-y" Z" 
~ T ,, ,/12 

•Lsy"z" 
l\.y"zn 

— 1 , , „ 1 4 

J^y"z" 

7+/,","11 

T ,, „ 1 2 

J z" Z" 

J z" z" 

T ,, ,,u 

J z" z" 

(S2z") 

J^y"z" 

J\.y"z" 

T ,, ,,14 

^y"z" 
— K ,, „ 1 3 

J z" Z" 

y+Jz-z-11 

J z" z" 

T zz z,1 3 
J z" Z" 

(Szz") 

K ,, zz13 

TLyf'z" 
~~T ,, zz14 

±jy"Z" 

Ky„Z»n 

— T,, ,,12 

±Jy»Z" 
T ,z z,13 

J z" Z" 

1 ,, ,,U 
J z" z" 

y+Jz-z"n 

7 ,, ,,12 

J z" z" 

(Siz») 

7 ,, zz14 
^y"z" 

— K ,, zz13 

7 ,, ,,12 

J\y>'z" 

7 ,, ,,U 
J Z" z" 

J, 13 

J,..,.v 
•Y+/*"*''11 

7=4/fer. 

(36b) 

(37) 

The matrix M is diagonalized in the usual way. If U-1MU is diagonal, then the columns of U are the spin eigen­
vectors which determine the spin configurations. Twelve distinct roots are obtained in all, with each root corre­
sponding to a different spin configuration and Neel temperature. We shall give only the root for the spin configu­
ration observed by neutron diffraction, which is 

(38) yN~4:kTN-=~Jy _ J ,, , ,12J_ J , , . , 1 3 4 . J ,, ,.14 = ] r _ T Jy"y" 1 Jy"y" \Jy"y" ^ 0 Jz 

VIII. STATIC SUSCEPTIBILITIES ABOVE T H E NEEL TEMPERATURE ON T H E MOLECULAR FIELD M O D E L 

This calculation is completely straightforward, the procedure being the same as in the calculation of the rf 
susceptibilities. The results are given below: 

4/3V 
X*(Z>2V) = -

AbT-4- 7 ,, z z n 4- 7 ,z , , 1 2 4 - 7 ,, zz134- 7 ,, ,,u ' 
!-tK±~Jx"x" \ J x"x" \Jx"x" \Jx"x" 

(39) 

1 P . W. Anderson, Phys. Rev. 79, 70S (1950). 
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4/?W(4HH-/^-u^^ 
~TJy"y" TJ y"y>' ) T^ ^&yy& zy \ 1^y"z" \ ^y"z" -*^y"z" ^TJ^y"x" J J 

XV(T>TN) = , (40) 
y±K 1 IT J y" y" iJy"y" H Jy"y" \Jy"y" J y±K± nTJ z"z" J z" z" ^rJz"z" J z" z" ) 

\l\-y" z" I JLjyttztt l\.ylt ztt ~X A_;yfl ztl J 

^2tgzZK^T + Jy,,y,,»~Jy,,y^ + Jy^ 
\Jz"z" \Jz"z" ) £&yz&zz\-L±-y"z" \-Ljy"z" \-£±-y"z" i ^y"z" )j 

XZ(T>TN) = : . (41) 
(AhT4- T ,, ,,U— T „ ,,12-\~ J ,, ,,13— J ,, ,,u)(4-hT4- T ,, , , n 4 - T ,, ,,124- T ,, , ,1 34- J ,, ,,u) 
\^±K± ^ j yify" j y"y" i Jy"y" J y"y" J y^K J- \ J z" z" \Jz"z" \Jz"z" \Jz"z" ) 

•—(K ,, ,,ll-\-T ,, ,,l2A-K ,, / , 1 3 - 4 - / // ,,u)2 

\J^-y"z" i-^y^z" \J^y"z" \ ^y"z" ) 

These expressions are worth some comment. First, it is 
seen that only in the crystal x direction is the Curie-
Weiss law strictly obeyed. The susceptibilities in the 
other two directions, i.e., in the canting plane, can be 
expressed in terms of a Curie-Weiss law with a tem­
perature-dependent Weiss constant, and a temperature-
dependent Curie constant. At higher temperatures Eqs. 
(40) and (41) reduce to the simple Curie-Weiss law. 

IX. CRYSTAL-FIELD CALCULATION 

The only information we have at the present time 
concerning the g values of the cobalt ion in this material 
is from the neutron-measured moment at 4.2 °K, which 
indicates that the largest principal g value is at least 
6.6, and the static susceptibility measurements of 
Pauthenet22 in a powder sample, which indicate that 
one of the g values is much larger than the other two 
(see Sec. XI). As the far-infrared resonance measure­
ments give the relative intensities of the absorptions, 
which are strongly dependent on the g values as well 
as the angles 6 and <ps [see Eqs. (31) and (32)], it was 
thought that further information might be obtained 
from an analysis of the g values within the crystal-field 
approximation. 

Lacking any detailed knowledge of the charge dis­
tribution and covalency of the ligands, this was done 
using a simple point-charge model. Further, to make 
the analysis as simple as possible, only the ground 4F 
term was considered, the 4P term being neglected. A 
similar analysis has been given previously23 in con­
nection with C0F2. One finds that the *F term splits in 
the octahedral field leaving a A2\ state lowest. After 
including the spin-orbit coupling, this 4Ti state splits, 
with a single Kramer's doublet lying ^350 cm"1 below 
all other levels. The level structure is shown schemati­
cally in Fig. 9. The crystal-field terms of lower sym­
metry affect the states in this doublet so as to produce 
anisotropic g values. As all excited states are so high, 
at reasonably low temperatures the magnetic properties 

22 See first footnote in E. F. Bertaut, J. Coing-Boyat, and A. 
Delapalme, Phys. Letters 3, 178 (1963); and (private communi­
cation). 

23 M. Tinkham, Proc. Roy. Soc. (London) A236, 549 (1956). 

of the crystal are completely determined by the ground 
doublet. 

Carrying through the analysis one finds that the 
orbital and spin parts of the g values can be expressed 
as 

10 4 
S * L = l - ( T + 8 ) , g*>s= (7+8), 

3 3 
10 8 

& , ^ = l + 2 7 , g , ' * = - + - y , (42) 
3 3 

10 4 
^ L = 1 _ ( 7 _ 6 ) ggts= ( 7 _ 5 ) 

3 3 

where 8 and 7 are parameters determined from the 
crystal field and radial wave function parameters. It is 
evident from (42) that whatever their values, the sum 
of the three g values will be 13, a point useful in 
analyzing the data. The radial wave functions may be 
taken to be those of Watson24 for neutral cobalt, since 

Mt . 

/ 4 FIG. 9. The elec-
/ ^ tronic splittings of 

F̂ L^"^ Co++ in cubic field 

\ and under spin-orbit 
\ coupling. 

\ 4 ^ . 64M 
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\ 2. UA 

free ion Cuhlc Yield A I'S 

24 R. E. Watson, Phys. Rev. 119, 1934 (1960). 
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he has shown that the 3d wave function is insensitive 
to the presence or absence of the As electrons. Using his 
functions,.we find (r2)=0.358 A2 and (r4)=0.300 A4. 
The positions of the point charges forming the dis­
torted octahedron which represents the environment 
of the cobalt ion may be estimated from the room-
temperature structure determination of Rentzeperis.10 

If we attribute a single negative charge to each oxygen 
atom, a numerical calculation leads to the results 

£V = 3.82, 

*,'=4.69, (43) 

g* = 4.49. 

These values support the position that gy* is the largest 
of the principal g values, but evidently the large 
anisotropy required by, e.g., the neutron-measured 
moment, is not accounted for. Presumably a much more 
careful treatment of the environment is required. 

X. THE EXPERIMENTAL SITUATION 

Transmission measurements have been made on 
powder samples of a-CoS04 at far-infrared wavelengths 
and at temperatures from 1.6°K to above the Neel 
temperature. The samples were prepared by heating 
reagent grade CoS04-7H20 to 300°C for 24 h in an 
atmosphere of argon and identified as a-CoSCU by 
x-ray analyses of the powder. The pale violet colored 
powder was then mixed with a small amount of paraffin 
wax which served as an adhesive. This was pressed into 
disks one to 2 (mm) thick and \ in. in diameter and 
mounted in the cryostat. The monochromator, bolome­
ter detector, and the far-infrared techniques used have 
been described elsewhere.25 The transmission spectrum 
observed below the Neel temperature was normalized 
to that taken above TV. This effectively eliminates all 
nonmagnetic effects such as lattice absorptions, re­
flections, etc., which usually are relatively temperature-
independent at these low temperatures. The sample 
temperature was controlled with a resistance heater 
mounted nearby and monitored with a x$ W, 100-0 
carbon resistor thermometer glued onto the edge of the 
sample with GE-7031 varnish. 

The study of a-CoS04 resulted in the discovery of 
three magnetic absorption lines which are shown in 
Fig. 10 and whose frequencies, relative intensities, and 
linewidths are given in Table V. (The linewidth is 
taken to be the interval between the frequencies at 
which the absorption coefficient is half its maximum 
value.) The two lines at 20.6 and 25.4 cm"1 are similar 
in width and intensity whereas the highest lying line 
at 35,8 cm-1 is broader and shallower. The linewidths 
and intensities of the lines are highly temperature-
dependent and the lines broaden into each other so that 

26 R. C. Ohlmann and M. Tinkham, Phys. Rev. 123, 425 (1961); 
A. J. Sievers, III, and M. Tinkham, ibid. 134, 321 (1961). 
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TABLE V. Antiferromagnetic resonance experimental results 
(T«TN). 

(Jdj 

OJk 

Frequency 
(cm"1) 

20.6±0.2 
25.4:4:0.2 
35.8±0.6 

Linewidth 
(cm"1) 

1.5 
1.5 
3.4 

Relative 
intensities 

1 
1 
0.1 

they cannot be resolved from one another at tempera­
tures close to the Neel point. In Table V the relative 
intensities refer to the ratios of the integrated rf sus­
ceptibilities fXir(o))do) of the three lines. The three 
frequencies are referred to as a>i, coy, and w& since they 
have not been identified with the theoretical expressions 
(23). 

The temperature dependence of the resonance fre­
quencies is shown in Fig. 11. As the temperature is 
raised, all of the resonance frequencies fall, but much 
more slowly than the appropriate Brillouin function. 
The extreme broadening of the lines makes it impossible 
to follow them any farther than is shown in the diagram. 
From a naive point of view, one might expect the tem­
perature dependence of the resonance frequencies to be 
proportional to that of the aligned component of the 
fictitious spin since by Eq. (23) the square of these 
frequencies depends on the product of two effective 
exchange fields, each being proportional to (s)av. The 
Brillouin function By2 is plotted for one of the resonance 
frequencies in Fig. 11. The discrepancy from the 
Brillouin function might possibly be accounted for by 
the theory of Bean and Rodbell26 for a magnetoelastic 
effect in ordered magnetic crystals. The exchange inter­
actions which are responsible for the ordering depend 
upon the interatomic spacing. Since the lattice is de-
formable, it will distort to increase the exchange cou­
pling and hence lower the free energy due to the ex­
change interaction, the amount of distortion being 

/f Ig l» ZQ U Of %M %& &? U H M 3® 4$ 4» 44 

FIG. 10. The far-infrared transmission spectrum 
at three temperatures. 

26 C. P. Bean and D. S. Rodbell, Phys. Rev. 126, 104 (1962). 
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limited by the associated increase in free energy due to 
the lattice strain. At lower temperatures where the 
spins are more ordered, the exchange energy is greater, 
causing greater distortion and an increased exchange 
coupling constant, corresponding to a higher Neel 
temperature. This "feedback" results in the magneti­
zation maintaining its low-temperature value until the 
temperature approaches the vicinity of the actual 
transition point, whereupon the magnetization falls 
rapidly to zero.26 In a-CoSOi the spin system is in close 
contact with the lattice because of the strong spin-orbit 
interaction and the large amount of unquenched orbital 
angular momentum. Consequently, one would expect 
and unusually strong dependence of exchange coupling 
parameters on lattice distortion. In addition to the 
distortion effects, similar behavior of the temperature 
dependence of the spins follows if biquadratic exchange 
terms should be included in the Hamiltonian of the 
system.27 Moreover, Harris28 has shown by a Monte 
Carlo calculation that anomalous magnetization curves 
can result even with quadratic exchange and a rigid 
lattice in a case like MnO where there is more than a 
single important exchange coupling. This result may 
well have implications for the present case. 

Finally, we shall briefly consider the temperature 
dependence of the sublattice magnetization or spin 
from the point of view of spin waves.29 In a-CoSOi the 
anisotropy is large and consequently the energy neces­
sary to excite a spin wave is large (^20-40 cm -1) and 
the dispersion is small, i.e., the excitation energy at 
k = 0 is not too different from that at the zone boundary. 
Because the Neel temperature, &TV~8 cm"*1, is less 
than half this excitation energy, very few spin waves 
are thermally excited until the temperature approaches 
TV. In this temperature region spin waves should be 
excited throughout k space, rapidly reducing the sub-

lattice spin. Thus, any of the effects discussed above, 
or indeed a combination of all of them, might explain 
the anomalous temperature dependence of the resonance 
frequencies. 

The Neel temperature has been found to be ~ 1 2 ° K 
by observing the temperature at which the antiferro-
magnetic line strengths go to zero; this is in agreement 
with Pauthenet's22 value which was determined by 
susceptibility measurements. The powder susceptibility 
(Xp) measurements of Pauthenet indicate classical 
antiferromagnetic behavior, that is 

(44) * P ( 0 ) = §Xp(TV). 

27 D. S. Rodbell, I. S. Jacobs, J. Owen, and E. A. Harris, Phys-
Rev. Letters 11, 10 (1963); 11, 104 (1963). 

28 E. A. Harris, Phys. Rev. Letters 13, 158 (1964). 
29 We would like to thank Dr. A. Narath of the Sandia Cor­

poration for a discussion of this point. 

This is the behavior one expects of a canted antiferro-
magnet which can be broken up into pairs of antiparallel 
sublattices. 

In addition, Pauthenet has found the molar powder 
Curie constant, Cp=3.12, and the paramagnetic Curie 
temperature, 0p= — 42°K. These constants are defined 
by the high-temperature behavior of the powder sus­
ceptibility curve. At lower temperatures (^80°K down 
to TV) a plot of 1/Xp versus T shows that 1/XP decreases 
with temperature faster than the high-temperature 
straight-line extrapolation, in qualitative agreement 
with the behavior expected from our expressions (40) 
and (41). 

Neutron diffraction experiments have furnished 
useful data: the magnetic structure (Fig. 1), the angle 
of cant (25°), and the magnetic moment at r = 4 . 2 ° K 
(3.3=k0.2 Bohr magnetons). If (pm is the angle between 
the magnetic moment and the single-primed y axis (a 
principal axis of the g tensor), then 0+(pm=25°. The 
g value in the equilibrium low-temperature configu­
ration (experimentally 6.6=L0.4) is given by Eq. (12). 
Equations (11) and (13) are also applicable. From Eq. 
(13) we see that 

g*>6.6. (45) 

XI. THE FITTING PROCEDURE 

Within the limits of the present model, the problem 
could be considered as solved if it were possible to 
obtain numerical values for the parameters of the 
Hamiltonian (18). A unique solution is impossible for 
several reasons: first, the lack of important experimental 
data, and second, the lack of a reliable theory which 
might enable us confidently to relate the Neel tem­
perature and the high-temperature susceptibilities with 
the exchange parameters. In view of the complexity of 
(18), a useful approach is to make as many approxi­
mations as seem physically reasonable, and then see if 
it is at all possible to reconcile different experimental 
results using these simplified expressions. 

Consideration of Table I I I and Fig. 4 indicates that 
the Coi—C03 and the C01--C04 exchange parameters 
are likely to be very nearly equal. [This is actually true 
of the exchange parameters expressed in the crystal 
coordinates, and is only approximately true in (18) 
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because of the system of axes we have chosen for repre­
senting our Hamiltonian.] Initially, at least, the intra-
sublattice exchange might be neglected as there is good 
reason for thinking that these terms are at least a factor 
of 2 smaller than any other terms in the Hamiltonian 
(Table I I I ) . We are now left with an eight parameter 
Hamiltonian. 

Using Eq. (38) and the experimental value of the 
Neel temperature we obtain 

/o=4ife7V=33.4 cm-1 . (46) 

Because of the unavailability of single crystals of 
a-CoS04, an unequivocal identification of the observed 
lines with the frequencies (23) is impossible. (Studies 
using single crystals and polarized infrared radiation 
would provide this information.) If we tentatively 
assign an, OOJ, a)k, (Table V) to coi, co3, and co5 [Eq. (23)], 
respectively, then using (46) one obtains: 

4co1^2/(^)2=1697(cm-1)2 

X ( 3 3 . 4 + J W , 1 2 - 2 J W , 1 3 ) , (47a) 

4co3
2&7 (he)2 = 2580 (cm-1)2 

= ( 3 3 . 4 + / ^ , 1 2 ~ 2 J W , 1 3 ) 

X ( 3 3 . 4 + J W , 1 2 + 2 J W , 1 3 ) , (47b) 

4o>5
2&2/ (he)2 = 4956 (cm"1)2 

- (33.4 - J W > 1 2 ) (33 .4 - JW> 1 2 ) . (47c) 

All the interactions between the cobalt ions are assumed 
to be antiferromagnetic except for that between Coi 
and C02 which is taken to be ferromagnetic. Thus, in 
the Hamiltonian (18) all the parameters are positive 
with the exception of J12 which is negative. As the most 
direct exchange paths between Coi and Co2 are much 
shorter and less complicated than any of the others, 
J12 is expected to be the largest set of exchange parame­
ters, perhaps by an order of magnitude, although a look 
at the basic interactions shows that J12 can have both 
ferromagnetic and antiferromagnetic components, the 
sum of which could reduce its absolute magnitude. This 
choice of interactions also gives the spin configuration 
associated with the root given in Eq. (38) the highest 
degree of stability since the Neel temperature is then 
maximized. Taking cognizance of the remarks above, 
we can easily see the difficulty of reconciling the Neel 
temperature with the far-infrared results (47) (if the 
molecular field calculation is assumed to be valid). The 
situation would be somewhat improved if the intra-
sublattice interaction were large and antiferromagnetic; 
however, this does not seem too reasonable. Again, if 
we assume that distortions are taking place at low 
temperatures, then the exchange would have a tem­
perature dependence such as to increase the effective 
value of TN which the system "feels" at temperatures 
much lower than the transition temperature. If this is 
the case, then it is not valid to use the value of TN 
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given in (46), but a larger-value which would indeed 
aid in the fitting of Eqs. (47). In order to use Eqs. (32) 
for the line intensities in the fitting procedure, we require 
more accurate knowledge of the g values and the angle 6. 

We can get information about the g values from 
measurements of the powder susceptibility 

Xp=CP/(T-dP)+X00. (48) 

Above 80°K, Pauthenet was able to fit his data with 
C P = 3 . 1 2 , 0 P = - 4 2 ° K , and X ^ O . We have replotted 
Pauthenet's data on a plot of XPT versus T rather than 
1/Xp versus T: 

XPT^Cp/(l~eP/T)+X^T. (49) 

This method brings out the temperature-independent 
term as the slope of the high-temperature straight-line 
fit, with the intercept of the xT axis giving Cp. I t is 
difficult to extract an accurate value of dp for a-CoS04 
in this type of plot because at high temperatures it is 
suppressed, and at low temperatures, the susceptibility 
deviates from the Curie-Weiss law due to either the 
approach of the Neel temperature [see Eqs. (40) and 
(41)], or due to the depopulation of a low-lying excited 
doublet. We have not observed the latter. We find 
C P = 2.3, X ^ 0.15X10-*, and 0P between - 1 0 and 
- 1 5 ° K . 

If we take the proper average for a powder sample, 
we find 

CP=N&<?)w/4k, (50) 

where A7o is Avogadro's number, 

{g*)^\(g*>2+gy>2+gZ>2), 

and k is the Boltzmann constant. Solving gives 
(gx>2+gy2+gz>2)~74:, taking C P = 2 . 3 . This, together 
with the constraint 

£*'+&/'+£*'= 13, (51) 

which follows from the crystal-field theory [see Eq. 
(42)] and is known to be obeyed by many cobalt salts 
for which paramagnetic resonance data exist, informs 
us that one of the g values, i.e., gy> must be much larger 
than the other two. From Eqs. (50) and (51), it is seen 
that gy> must be between 7 and 8 which is in agreement 
with the neutron diffraction data. These deductions 
are only valid if the nearest excited doublet is suffi­
ciently high so as not to contribute to the suscepti­
bility in the temperature region where Pauthenet's 
data were fitted. 

I t must unfortunately be concluded that it is im­
possible to deduce meaningful values for the parameters 
in this problem with the present limited experimental 
data. I t is hoped that the growth of single crystals in 
the near future will enable further progress to be made. 
The availability of single crystals would permit the 
definite identification of the modes; static suscepti­
bility measurements will yield the three x's at T~0 
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[Eqs. (33)J, the three x's at T=TN, the three high-
temperature Curie constants C, and the three Weiss 
constants dp [Eqs. (39)-(41)]. These data would trans­
form the situation and make possible a meaningful fit. 

XII. CONCLUSION 

By analyzing the magnetic properties of (2-C0SO4 it 
has become apparent that an exchange interaction 
isotropic in the true spin is quite inadequate to describe 
this problem. The fact that in an octahedral environ­
ment, cobalt has a degenerate orbital triplet results in 
its orbital angular momentum remaining largely un-
quenched by the crystalline field. Octahedral distortions 
can give rise to large anisotropic exchange interactions, 
the source of the anisotropy being the spin-orbit inter­
action. By considering the system in terms of the 
fictitious spin of J, we have seen that the anisotropic 
g tensor can give rise to additional effective anisotropic 
and antisymmetric exchange. Use of the isotropic fic­
titious spin enables one to analyze easily the dynamical 
and static properties of the crystal, as compared to the 
difficulties that would be encountered if one attempted 
to approach the problem in terms of the true spins or 
magnetic moments. In addition, our method of writing 
down the Hamiltonian and using a system of non-
orthogonal axes seems to be a useful technique for this 
and other problems. This same approach is used to 
treat the four-sublattice noncoplanar canted anti-
ferromagnetic 0-CoSQ4 in work now in preparation. 

Experimentally the far-infrared studies have yielded 
valuable information about a-CoS04 and a far-infrared 
mode whose existence is due to the spins being canted 
has been observed. 

The impossibility of reconciling the Neel temperature 
and the resonance frequencies using a molecular field 
model is apparent. As was explained in the last section, 
some sort of progressive distortion and a temperature-
dependent TN could possibly be responsible, and x-ray 
determinations of the crystal structure at helium tem­
peratures would be of great interest. An additional 
explanation is the inadequacy of the molecular field 
method. Even in simple cases this approximation is 

known to be inadequate. A proper treatment of the 
a-CoS04 system allowing for the effects of long- and 
short-range order and anisotropy might aid in removing 
these discrepancies, and also give the observed tem­
perature variation of the resonance frequencies. 
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APPENDIX 

We would like to find the temperature dependence 
of s with the Hamiltonian 

Using the Pauli spin-! matrices, we diagonalize the 
Hamiltonian to find energy eigenvalues: 

€;-±M^MV+^2)1/2-±*> 
with corresponding eigenfunctions 

| f l ) = c o s p | + ) + s i n ^ * | — ) , 

\h)==—sm(p\+)+cos(pe^\— ) , 
where 

t a i i 2 ? = ( c . H - 0 1 / 2 A . , 

ta,m(/=cy/cx. 

We then evaluate 

to find 

{SZ)T = - \ cos2 <p tanh (e/kT) , 

fa*)r= — \ sin2<p cos^ tanh(e /^r ) , 

($U)T^ —\ sin2<p sin^ tanh(e/&r). 

In the limit e/kT<g.l, these all reduce to 

(si)T= ~~Ci/4:kT, i=%, y, z. 


